บทบาทของ chlorophyllase ต่อการสลายตัวของคลอโรฟิลล์ในบรอกโคลีและการควบคุมการสลายตัวของคลอโรฟิลล์ โดยการใช้รังสียูวี

อนุพงษ์ ก้าวสัมพันธ์*

บทคัดย่อ

การเหลืองของบรอกโคลีเป็นลักษณะปรากฏที่เกิดขึ้นควบคู่กับการสลายตัวของคลอโรฟิลล์ ดังนั้นงานวิจัยนี้ได้ ทำการศึกษาผลของการใช้รังสียูวีเอและยูวีบีเพื่อควบคุมการเกิคสีเหลืองของคอกบรอกโคลีและศึกษาบทบาทของ เอนไซม์ chlorophyllase ต่อการสถายตัวของคลอโรฟิลล์ในดอกบรอกโคลี จากผลการทดลองพบว่าการเปลี่ยนแปลงค่า hue angle ของบรอกโคลีที่ผ่านการฉายรังสียูวีเอไม่มีความแตกต่างกับบรอกโคลีที่ไม่ผ่านการฉายรังสียูวี ในขณะที่การ ้ฉายรังสียูวีบีที่ระดับ 8.8 และ 13.1 กิโลจูลต่อตารางเมตร สามารถยับยั้งการเปลี่ยนแปลงสีของดอกบรอกโคลีได้ เมื่อนำ ้บรอกโคลีที่ผ่านการฉายรังสียูวีบีที่ระดับ 8.8 กิโลจูลต่อตารางเมตร ไปเก็บรักษาในที่มืคที่อุณหภูมิ 15 องศาเซลเซียส พบว่ารังสียูวีบีที่ระคับ 8.8 กิโลจูลต่อตารางเมตร มีประสิทธิภาพในการชะลอการเหลืองของบรอกโคลี โดยมีปริมาณของ ้คลอโรฟิลล์สูงกว่าในบรอกโคลีที่ไม่ผ่านการฉายรังสียูวีบี นอกจากนี้ยังพบว่าอนุพันธุ์ของคลอโรฟิลล์ในบรอกโคลีที่ ้ผ่านการฉายรังสี่ยูวีบีที่ระดับ 8.8 กิโลจูลต่อตารางเมตร ซึ่งประกอบไปด้วย chlorophyllide a C13² – hydroxyl chlorophyll a และ pheophytin a มีการสลายตัวช้ากว่า ดังนั้นจึงตรวจพบ pheophorbide a และ pyropheophorbide a ใน ้ปริมาณที่ต่ำกว่าบรอกโคลีที่ไม่ผ่านการฉายรังสียูวีบี ซึ่งการชะลอการเหลืองของบรอกโคลีมีผลเนื่องมาจากรังสียูวีบีที ระดับ 8.8 กิโลจูลต่อตารางเมตร สามารถชะลอการกิจกรรมของเอนไซม์ chlorophyllase จากการทำบริสุทธิ์เอนไซม์ (purification) chlorophyllase โดยวิธี molecular exclusion chromatography พบว่าเอนไซม์ chlorophyllase ในบรอกโคลี ้สามารถแบ่งออกได้เป็น 2 ชนิด คือ chlorophyllase ชนิดที่ 1 และ 2 สำหรับบรอกโคลีที่ผ่านการฉายรังสียุวีบีที่ระดับ 8.8 ้กิโลจูลต่อตารางเมตร มีก่า K... ของเอนไซม์ chlorophyllase ชนิคที่ 1 น้อยกว่าชนิคที่ 2 ซึ่งสามารถบ่งชี้ได้ว่าการฉายรังสียู ้ วีบีที่ระดับ 8.8 กิโลจูลต่อตารางเมตร มีประสิทธิภาพในการยับยั้งการทำงานของเอนไซม์ chlorophyllase ชนิดที่ 1 ดังเห็น ใด้จากการที่กิจกรรมของ chlorophyllase ชนิดที่ 1 มีการเปลี่ยนแปลงอย่างชัดเจนในระหว่างการพัฒนาสีจากเขียวไปเป็น ้เหลือง ในขณะที่เอนไซม์ chlorophyllase ชนิดที่ 2 มีการเปลี่ยนแปลงกิจกรรมน้อยมากซึ่งเป็นไปได้ว่าเอนไซม์ chlorophyllase ชนิคที่ 2 อาจมีส่วนร่วมเพียงเล็กน้อยในกระบวนการสลายตัวของคลอโรฟิลล์ในบรอกโคลี

^{*} วิทยาศาสตรมหาบัณฑิต (เทคโนโลยีหลังการเก็บเกี่ยว) คณะทรัพยากรชีวภาพและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้า ธนบุรี. 68 หน้า.

Involvement of Chlorophyllase on Chlorophyll Degradation in Stored Broccoli Florets and its Control by UV Treatments

Anupong Kaosamphan

Abstract

Yellowing is the most visible deterioration in broccoli that usually occurs with the progress of chlorophyll degradation. This study delayed with the control of floret yellowing by using UV-A and UV-B irradiation and the involvement of chlorophyllase on chlorophyll degradation in broccoli. The results showed that there was not significantly difference of broccoli florets color (hue angle value) between UV-A treatment and the control (untreated broccoli). This indicated that UV-A irradiation could not inhibit the chlorophyll degradation in broccoli floret. While, UV-B irradiation at 8.8 and 13.1 kJ m⁻² significantly delayed the vellowing of broccoli floret. UV-B irradiation at 8.8 kJ m⁻² was selected for further study and it was found that UV-B at 8.8 kJm⁻² effectively delayed the vellowing of broccoli florets. Chlorophyll content in broccoli treated with UV-B at 8.8 kJm⁻² was higher than in untreated broccoli. Moreover, the levels of chlorophyll derivatives in broccoli treated with UV-B at 8.8 kJm⁻² including chlorophyllide a_{1} $C13^{2}$ -hydroxy chlorophyll *a* and pheophytin *a* were higher than that of untreated broccoli. This was concomitant with the low accumulation of pheophorbide a and pyropheophorbide a levels in UV-B treated broccoli. The results revealed that chlorophyllase activity in broccoli florets was effectively suppressed by 8.8 kJm⁻² UV-B treatment, thus the chlorophyll degradation was lowered. From the purification of chlorophyllase by molecular exclusion chromatography, there were two types of chlorophyllase in broccoli florets (type I and II). The K_m value of type I chlorophyllase was lower than that of type II chlorophyllase. Thus, the activity of type I chlorophyllase was clearly exhibited with the progress of floret senescence whereas, type II chlorophyllase may just take in part of chlorophyll degradation in broccoli florets.

^{*} Master of Science (Postharvest Technology), Faculty of School of Bioresources and Technology, King Mongkut's University of Technology Thonburi. 68 pages.