Title
Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life

Author Manuela Zude, Bernd Herold, Jean-Michel Roger, Veronique Bellon-Maurel and Sandra Landahl Citation Journal of Food Engineering, Volume 77, Issue 2, November 2006, Pages 254-260

Keywords Apple; Fruit quality; Fruit flesh firmness; Non-destructive sensing; OHD; Shelf life; Sensor fusion; Soluble solids content; Spectral analysis


#### Abstract

Acoustic impulse resonance frequency sensor and miniaturized VIS/NIR spectrometer were applied on apple fruit Malus domestica 'Idared' and 'Golden Delicious' $(n=800)$ to predict fruit flesh firmness and soluble solids content (SSC) on tree and in shelf life. Partial least-squares calibration models on acoustic data and VIS spectra of 'Golden Delicious'/‘Idared' apple fruits on tree were built for predicting the fruit flesh firmness: coefficients of determination $\left(R^{2}\right)$ and standard errors of cross-validation (SECV) of $R^{2}=0.93 / 0.81$ and $\mathrm{SECV}=7.73 / 10.50\left[\mathrm{~N} / \mathrm{cm}^{2}\right]$ were calculated. SSC prediction of freshly harvested apples using NIR spectrometry was obtained with $R^{2}=0.20 / 0.41$ and SECV $=1.29 / 0.94$ [ ${ }^{\circ}$ Brix]. Prediction of SSC and fruit flesh firmness of stored 'Golden Delicious'/‘Idared' apple fruits showed high errors or was not possible.

The fruit maturity stage on tree was predicted as classes based on calendar weeks for 'Golden Delicious'/‘Idared' apple fruits with $64 \% / 66 \%$ correct classification and $92 \% / 84 \%$ correct plus neighboring class with SECV $=0.9 / 0.9$ [weeks]. Classes of 'Golden Delicious'/‘Idared' apple fruit at different quality levels due to different storage conditions were non-destructively discriminated with $77 \% / 84 \%$ correctly classified fruits and $93 \% / 99 \%$ correct plus neighboring class with $\mathrm{SECV}=0.8 / 0.5$ [classes].

The results show the potential of non-destructive sensors for predicting accepted fruit parameters enabling the determination of optimum harvest date and fruit quality in shelf life.


