Title	Change in Diffusional Water Permeability of Spinach Leaf Cell Membrane determined by Nuclear
	Magnetic Resonance Relaxation Time
Author	Seiichi Oshita, Asuka Maeda, Yoshinori Kawagoe, Hidenori Tsuchiya, Shinichiro Kuroki,
	Yasuhisa Seo and Yoshio Makino
Citation	Biosystems Engineering, Volume 95, Issue 3, November 2006, Pages 397-403
Keywords	spinach; water permeability; NMR

Abstract

The nuclear magnetic resonance spin-lattice relaxation times of spinach leaf protoplasts suspended in 0.6 M mannitol solution were measured in the presence (T_{1s}) and absence (T_{1f}) of Mn²⁺ ions to determine the water exchange time λ and water permeability coefficient P_d of membrane. For the spinach stored for 1 d at 2 °C, λ was determined to be 76.4 m s and P_d was 49 µm s⁻¹. As to the spinach stored for 6 d, λ was 52.7 ms and P_d was 71 u s⁻¹. Values of P_d obtained in this study had the same order of magnitude as literature values. Both the decrease in λ and the increase in P_d with storage time showed that cell membrane became freely permeable state with storage duration. It was thought that the aquaporin of PM28A, a major intrinsic protein of the spinach leaf plasma membrane, was not a major cause of the increase in water permeability of cell membrane after harvest because the decrease in the expression of PM28A was observed in 1 d.