Abstract:

Brown Heart (BH) in 'Conference' pears (Pyrus communis L.) can appear in CA storage. BH could be due to lower energy production than maintenance energy needs. Gas exchange rates of individual fruit were measured in different pO_2 and pCO_2 at 0°C at harvest and during the first period of storage, on 'Conference' pears of different maturity stored in 2% O_2 and 0.7 or 5% CO_2 . Gas exchange rate data were analysed by non-linear regression using Michaelis-Menten type models. O_2 uptake followed a model with no inhibition by CO_2 . At harvest, maximum O_2 uptake decreased with later harvest, and during storage it decreased in early-harvested pears, but not in lateharvested ones. Resistance to gas diffusion was higher for O_2 than for CO_2 , contrary to what is predicted by Graham's Law. Late-harvested fruit showed higher resistance to gas diffusion, increased KmO₂ with storage time and reduced aerobic respiration at pO_2 close to that of storage atmosphere. Late-harvested fruit showed higher BH than normal-harvested fruit, especially with high pCO_2 . Gas exchange rates could be related to BH in late-harvested fruit. No effect of CO_2 was found on O_2 exchange rates. It appears that processes other than gas exchange rate are involved in the relationship between CO_2 and BH.