
Abstract

: There is no commercial application of modified atmosphere storage or packaging for cut flowers. The reason for that would be that the most decisive factor for keeping quality is a low temperature during storage and transport. In practice, however, this low temperature is not always realised. However it is worthwhile knowing potential quality benefits that may arise from the use of modified O_{2} and/or CO_{2} concentrations at sub-optimal temperatures. Experiments have been conducted on cut rose flowers 'First Red' to study the effect on postharvest physiology of different O_{2} partial pressures $(0.5-21 \mathrm{kPa})$ during 5 days at $12^{\circ} \mathrm{C}$. During this period of transport simulation at different O_{2} partial pressures, respiration rate and ethylene production of the flowers was measured. During subsequent flower opening during vase life, diameter and longevity of the flowers were recorded. Fresh weight and area of single petals were measured daily. Growth during vase life of the inner and outer petal surfaces was estimated. Oxygen uptake rate and ethylene production were logarithmically related to O_{2} partial pressure. To lower oxygen uptake rate to less than 50% of that in air, a partial pressure of O_{2} should be $<2 \mathrm{kPa}$. However, in the O_{2} range $<2 \mathrm{kPa}$ the R (espiratory) Q (uotient) indicated anaerobic respiration. Vase life was not significantly affected by O_{2} concentrations during a 5 day storage period. Low O_{2} partial pressures during storage resulted in poor flower opening afterwards. Petal growth was not inhibited by low O_{2}-storage, but outer petals showed a greater increase in surface area and fresh weight after storage at $1 \mathrm{kPa}_{2}$ than at higher O_{2} partial pressures. Poor flower opening was the result of an increase in cell size at the upper region of the outer petal layer, which hampered outward reflex of the petals.

