Title	Inactivation of Bacteria, Yeasts and Molds on Palletized Highbush Blueberries Using Chlorine Dioxide
	Sachets
Author	Iuliano Popa, Eric J. Hanson, Annemiek Schilder, Ewen C. D. Todd, and Elliot T. Ryser
Citation	Program and Abstract Book, IAFP 2005 (International Association for Food Protection) - 92 nd Annul
	Meeting, 14-17 August 2005, Baltimore, Maryland, USA. 256 pages.
Keyword	blueberry; chlorine dioxide; foodborne pathogen

Abstract

Chlorine dioxide $(C10_2)$ gas generated by a dry chemical sachet was tested against three foodborne pathogens, five yeasts and five molds known for spoilage. Initially, five fresh blueberry samples (100 g) were separately inoculated with *Listeria monoctogenes, Salmonella, Escherichia coli* 0157:H7 (3 strains each), and yeasts and molds (5 strains each) to contain ~10⁶ CFU/g and treated with C10₂ (4 mg/l) for 12 h in a sealed 20-1 container (99.9% RH) at ~22°C (3 replicates). After gassing, blueberries (25 g) were diluted 1:5 in neutralizing buffer, pulsified for 1 min and plated using standard FDA procedures to quantify survivors. This treatment yielded reductions of 3.94, 3.62, 4.25, 3.10, and 3.17 log CFU/g for *L. monocytogenes, Salmonella, E. coli*, yeasts and molds, respectively. Thereafter, 30 lugs of blueberries (~9.1 kg/lug) were stacked on 4 x 4 ft pallets (5 lugs/level x 6 levels) (6 replicates), tarped, and exposed to C10₂ (18 mg/l) for 12 h. After gassing, significant (P < 0.05) reductions of 2.12, 1.61, 0.72, 1.76, and 1.55 log CFU/g were seen for mesophilic aerobic bacteria (MAB), yeasts, molds, coliforms, and *E. coli*, respectively, compared to ungassed controls. No significant differences (P > 0.05) in microbial inactivation were seen between lug levels and, with one exception (MAB), between the bottom and top surface of individual lugs. Based on these findings, C10₂ sachets may provide a simple, economical and effective means of enhancing the microbial shelflife and safety of fresh blueberries.