Application of ABA and GA₃ alleviated browning of litchi (*Litchi chinensis* Sonn.) via different strategies

Shanshan Qu, Mengmeng Li, Guang Wang and Shijiang Zhu

Postharvest Biology and Technology, Volume 181, November 2021, 111672

Abstract

Browning of harvested litchi causes fast quality losses that are closely associated with anthocyanin degradation. Abscisic acid (ABA) and gibberellins (GA) are antagonistic in regulating plant growth and development, but it is unclear whether and how they affect anthocyanin metabolism in harvested litchi fruit. Here, application of ABA and GA₃ to harvested litchi reduced browning and maintained higher anthocyanin content relative to the untreated control during storage at 20°C. Transcriptome profiling showed 2362 and 6304 differentially expressed genes (DEGs) were induced in response to ABA and GA₃ treatment, respectively, implying the metabolism pathways regulated by ABA and GA are quite different. The flavonoid and phenylpropanoid biosynthesis are two of the 30 most enriched KEGG pathways for ABA-treated fruit compared with the control, but not for GA₃-treated fruit. ABA upregulated key DEGs involved in phenylpropanoid biosynthesis and anthocyanin synthesis pathways, phenylalanine ammonialyase (PAL), cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS) and UDP-flavonoid glucosyl transferase (UFGT), but GA₃ downregulated them. ABA upregulated DEGs related to anthocyanin degradation and transport, laccase (LAC), peroxidase (POD), and glutathione Stransferase (GST), whereas GA₃ downregulated them. Of the 29 different anthocyanin-related metabolites identified by LC-MS, ABA and GA₃ caused increase of four and two, respectively. Taken together, ABA alleviated browning mainly by promoting anthocyanin synthesis, whereas GA₃ inhibited anthocyanin degradation. These findings add to understanding of the roles of ABA and GA in regulating anthocyanin metabolism of plants in senescent stages and provides new approaches to pericarp browning prevention in litchi.