Ethanol treatment suppresses the yellowing of fresh-cut yam by repressing the phenylpropanoid pathway and bisdemethoxycurcumin biosynthesis

Shuang Guo, Xiaoyan Zhao, Yue Ma, Yan Zhang and Dan Wang

Postharvest Biology and Technology, Volume 181, November 2021, 111642

Abstract

An ethanol treatment (10 % v/v) inhibited the yellowing of fresh-cut yam during storage. The ethanol treatment also prevented bisdemethoxycurcumin formation, and reduced the contents of metabolites in fresh-cut yam during storage at 25 °C. Ethanol treatment also inhibited the activities of key enzymes in the phenylpropanoid pathway, including phenylalanine ammonia lyase (PAL), cinnamic acid-4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL), and decreased the transcription level expressions of PAL, C4H, and 4CL compared to the control. The expressions of diketide-CoA synthase, curcumin synthase 3, and curcumin synthase were also reduced by ethanol treatment compared to the control, in agreement with the absence of bisdemethoxycurcumin in fresh-cut yam treated with ethanol. These findings suggest that ethanol can be used to attenuate the yellowing of fresh-cut yam stored at 25 °C, which may be related to ethanol inhibition of the phenylpropanoid pathway and bisdemethoxycurcumin biosynthesis.