Development of pattern recognition and classification models for the detection of vibro-acoustic emissions from codling moth infested apples

Nader Ekramirad, Alfadhl Y. Khaled, Chadwick A. Parrish, Kevin D. Donohue,

Raul T. Villanueva and Akinbode A. Adedeji

Postharvest Biology and Technology, Volume 181, November 2021, 111633

Abstract

Codling moth (CM) is the most devastating global pest of apples with a huge potential impact on the post-harvest quality and yield of the product. Due to the small size of its larvae and potentially hidden behavior, simple visual inspection is ill-suited for accurate infestation detection. The characteristic vibro-acoustic signals of multiple behaviors of CM larvae such as chewing and boring were identified in a previous study. In this study, two different approaches were proposed to build on this previous work: multi-domain feature extraction with machine learning to show basic classification potential, and matched filter-aided classification to show the effects of preprocessing using the larval behavior templates. Additionally, low-intensity heat stimulation was applied to improve classification results by increasing the larvae's hidden activity rate. The results indicated that the first approach led to accuracies as high as 97.47 % for an acoustic signal duration of 10 s, with heat stimulation improving classification rates to 98.96 % for the same interval. Finally, the matched filter-aided classification approach improved upon the heat stimulated results even further to obtain a 100 % accuracy on classifying the test set for a signal duration of 5 s. These findings suggest that the vibro-acoustic technique can be an adaptable tool for detecting CM infestation in apples and improve post-harvest classification quality in fruit.