Exogenous calcium chloride ($CaCl_2$) promotes γ -aminobutyric acid (GABA) accumulation in fresh-cut pears

Zongyu Chi, Yuqin Dai, Shifeng Cao, Yingying Wei, Xingfeng Shao, Xiaosan Huang, Feng Xu and Hongfei Wang

Postharvest Biology and Technology, Volume 174, April 2021, 111446

Abstract

Effect of calcium chloride (CaCl₂) on γ -aminobutyric acid (GABA) accumulation pathways in freshcut pears was investigated. The metabolites, enzyme activity and gene expression associated with GABA shunt and polyamine degradation were measured. Results demonstrated that CaCl₂ treatment promoted GABA accumulation and reduced the glutamate (Glu) content in freshcut pears. Ca²⁺ fluorescence in pear cell, glutamate decarboxylase (GAD) activity and its gene expression increased significantly under CaCl₂ treatment correspondingly. Meanwhile, the Ca²⁺ channel blockers lanthanum chloride (LaCl₃) treatment not only significantly inhibited the activities of GAD, GABA transaminase (GABA-T), diamine oxidase (DAO), polyamine oxidase (PAO) and aminoaldehyde dehydrogenase (AMADH), but also down-regulated the transcripts of *PbGAD*, *PbGABA-T*, *PbPAO1* and *PbPAO2*. Taken together, it can be concluded that CaCl₂ seems to be more effective to GABA shunt, while LaCl₃ treatment mightily stimulate GABA shunt and polyamine degradation pathway.