Comparison of a dual-laser and a Vis-NIR spectroscopy system for detection of chilling injury in kiwifruit

Zhen Wang, Rainer Künnemeyer, Andrew McGlone, Jason Sun and Jeremy Burdon

Postharvest Biology and Technology, Volume 175, May 2021, 111418

Abstract

A novel dual-laser system with laser wavelengths of 730 nm and 850 nm has been developed for the non-destructive detection of chilling injury in *Actinidia chinensis* var. *chinensis* 'Zesy002' kiwifruit. Chilling injury in kiwifruit is a physiological disorder that may occur during low-temperature storage, with symptoms that are often not evident until the fruit is cut open. This study involved a sample of 162 kiwifruit with differing severity of chilling injury, and a performance comparison between the novel dual-laser system and a standard visible – near infrared (Vis-NIR) interactance spectroscopy approach proven in a prior study. The dual-laser system involved scanning the laser beams across the fruit to generate spatial profiles of light transmission in the fruit. Data analysis with supervised model training, using a support vector machine algorithm, was successfully used to achieve cross-validation prediction accuracies higher than 90 % for distinguishing sound and chilling-injured kiwifruit. The performance was equivalent to that achieved by the Vis-NIR interactance spectroscopy approach, suggesting that the dual-laser method is an alternative and more attractive option because of its easier system layout for high-speed on-line sorting of kiwifruit for chilling injury disorder.