Title	Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to
	control postharvest brown rot on peaches and nectarines
Author	Carla Casals, Neus Teixidó, Inmaculada Viñas, Elisa Silvera, Neus Lamarca and Josep
	Usall
Citation	European Journal of Plant Pathology, 128, Number 1, 51-63, 2010
Keywords	Bacillus subtilis; Food additives; Heat treatments; Integrated disease management;
	Monilinia spp : Stone fruit

Abstract

The aim of this study was to evaluate the effect of hot water (HW), antagonists and sodium bicarbonate (SBC) treatments applied separately or in combination to control *Monilinia* spp. during the postharvest storage of stone fruit. Firstly, we investigated the effect of HW temperatures (55-70°C) and exposure times (20–60 s), seven antagonists at two concentrations (10^7 or 10^8 cfu ml⁻¹) and four SBC concentrations (1-4%). The selected treatments for brown rot control without affecting fruit quality were HW at 60°C for 40 s, SBC at 2% for 40 s and the antagonist CPA-8 (Bacillus subtilis species complex) at 10^7 cfu ml⁻¹. The combinations of these treatments were evaluated in three varieties of peaches and nectarines artificially inoculated with M. laxa. When fruit were incubated for 5 d at 20°C, a significant additional effect to control M. laxa was detected with the combination of HW followed by antagonist CPA-8. Only 8% of the fruit treated with this combination were infected, compared to 84%, 52% or 24% among the control, CPA-8, and HW treatments, respectively. However, the other combinations tested did not show a significant improvement in effectiveness to control brown rot in comparison with applying the treatments separately. When fruit were incubated for 21 d at 0°C plus 5 d at 20°C, the significant differences between separated or combined treatments were reduced and generally the incidence of brown rot was higher than when fruit were incubated for 5 d at 20°C. Similar results were observed testing fruit with natural inoculum.

http://www.springerlink.com/content/41600005n2732h85/fulltext.pdf