Title	Screening and identification of epiphytic yeasts with potential for biological control of
	green mold of citrus fruits
Author	Naima Taqarort, Abdelouahed Echairi, Remi Chaussod, Rachida Nouaim, Hassan
	Boubaker, Abdellah A. Benaoumar and Elhassan Boudyach
Citation	World Journal of Microbiology and Biotechnology, 24, Number 12, 3031-3038, 2008
Keywords	Antagonistic yeast; Biological control; Citrus fruits; Penicillium digitatum; Postharvest

Abstract

Epiphytic yeasts isolated from the surface of citrus fruits, harvested in several orchards in the Souss-Massa-Drâa Valley, Agadir, Morocco, were in vivo screened for antagonistic activity against *Penicillium digitatum*, the causal agent of green mold of citrus. From a total of 245 yeast strains assessed for their biocontrol activity against *P. digitatum*, fifteen reduced the incidence of disease to less than 50%. The effectiveness of the best selected yeast strains showed that *Pichia anomala* (YT73), *Debaryomyces hansenii* (YT22) and *Hanseniaspora guilliermondii* (YT13) were the most effective, with a reduction of green mold incidence from 65 to ~80%, compared to the control. The identification of the fifteen selected yeast strains was carried out through an integrated approach including phenotypic and genotypic (sequencing of D1/D2 domain of 26S rDNA encoding gene) methods. These 15 selected were identified as: *H. guilliermondii*, *D. hansenii*, *H. uvarum* and *P. anomala*. The study of the dynamics of two of the best strains, *H. guilliermondii* and *D. hansenii*, showed that these strains can grow rapidly, by approximately 2 log units, in citrus fruit wounds. Such rapid growth in wounds indicates that these antagonist yeasts are excellent colonizers of citrus wounds and can thrive on citrus fruits as a substrate.

http://www.springerlink.com/content/3h6140m2h5j84759/fulltext.pdf