Title	Effect of a biocontrol agent (Bacillus subtilis) and modified atmosphere packaging on
	postharvest decay control and quality retention of litchi during storage
Author	Dharini Sivakumar, Karin Zeeman and Lise Korsten
Citation	Phytoparasitica, 35, Number 5, 507-518, 2007
Keywords	Fructoplane population; Litchi chinensis; low density polyethylene
	(LDPE); polypropylene (PP); sulfur dioxide fumigation

Abstract

The efficacy of biological control and two types of modified atmosphere packaging (MAP) alone and in combinations was evaluated under cold storage as well as simulated market-shelf conditions to control decay and pericarp browning on litchi cv. 'McLean's Red'. Fruits were dipped for 2 min at 15°C in Bacillus subtilis or prochloraz separately, packed in MAP [low density polyethylene (LDPE) or polypropylene (PP)], heat sealed and stored at 2°C and 90% r.h. for 18 days followed by 2 days at 14°C and 75% r.h. to simulate market-shelf conditions. A commercially adopted sulfur dioxide treatment was included as a comparative control. Fruits treated with B. subtilis + PP or prochloraz + PP and stand-alone PP treatment did not show decay or browning at 2°C. Decay and browning were controlled significantly after 2 days at 14°C inB. subtilis + PP or prochloraz + PP treatments. However, the prochloraz + PP affected the natural pinkish-red color of the pericarp and gave higher h° (hue angle) values. The standalone PP treatment ($\sim 14\%$ O₂, $\sim 5\%$ CO₂) showed 11.3% decay due mainly to Alternaria alternata and Cladosporium spp. at 14°C. The effectiveness of the MAP was improved at 14°C when B. subtilis was combined with PP, controlling decay and pericarp browning and retaining the fruit color and quality.B. subtilis survived in PP at 2° and 14°C, but not in LDPE. Stand-alone LDPE (\sim 3% O₂, \sim 10% CO₂) and combination treatmentsB. subtilis + LDPE or prochloraz + LDPE failed to control decay and pericarp browning. Higher yeast populations were observed in LDPE or B. subtilis + LDPE at both 2° and 14°C. Candida, Cryptococcus and Zygosaccharomyces spp. were the predominant yeasts in all LDPE treatments.

http://www.springerlink.com/content/1847v4204p267567/fulltext.pdf