Title	Effects of organic, biological and conventional production methods on apple antioxidant
	levels, sensory qualities and human glycemic response
Author	Jana Bogs and Cecil Stushnoff
Citation	Thesis, Doctor of Philosophy (Horticulture), Colorado State University.149 pages. 2009.
Keywords	Antioxidant; Sensory qualities; Glycemic response; Phenolics; Soluble solids

Abstract

Different cultivation systems of fruit trees may influence fruit nutrient and phytochemical content, and consequently human responses. 'Braeburn' (M. domestica) apples grown in Washington state in 2007 under biologically-enhanced organic and conventional methods were evaluated for antioxidant properties . Treatments were split to include apples from the outside and inside of the tree canopies. There were no differences (P > 0.05) in ABTS or DPPH antioxidant activity between organic and conventional 'Braeburn' apples. Organic 'Braeburn' apples had a higher level (P = 0.003) of total phenolics (TP) than the conventional apples. Outside canopy apples had higher TP, ABTS and DPPH antioxidant activity levels (P < 0.01) than inside canopy apples. Organically-grown 'Braeburn' apples from both outside and inside the canopies had higher soluble solids levels (P < 0.001) than those conventionally-grown. Fruit soluble solids content was higher (P = 0.002) in 'Braeburn' apples from outside the canopy. The 'Braeburn' overall acceptability sensory ratings for organic apples were significantly higher (P < 0.001), than conventional fruits, and outside canopy fruits surpassed inside canopy fruits (P < 0.001). 'Crimson Gala' (M. domestica) apples from Washington state orchards grown under biologically-enhanced conventional management and typical conventional management were evaluated in 2008. The biological apples had higher ABTS antioxidant activity than the conventional (P = 0.0498). The conventional 'Gala' apples had higher DPPH antioxidant activity (P = 0.002) than the biological. There was no difference (P = 0.681) between the biological and conventional 'Gala' apple total phenolics (TP) levels. None of the values used to compare human glycemic response were statistically different (P > 0.05). The conventionally-grown 'Gala' apples had higher soluble solids levels (P = 0.005), greater shelf life (P = 0.035), and a higher overall sensory rating (P = 0.014) than the biologically-grown fruit. The above measured values were also correlated with soil, leaf, and fruit tissue values. It should be noted that the biological 'Gala' orchard had a soil with a cation exchange capacity (CEC) of 7.1 meq/100g compared to the conventional control orchard's CEC of 11.3 meq/100g, which may have negatively affected the quality of the biological apples.