Title	Antifungal activity of eucalyptus-derived phenolics against postharvest pathogens of
	kiwifruits
Author	Oh S.O., Kim J.A., Jeon H.S., Park J.C., Koh Y.J., Hur H. and Hur J.S.
Citation	The Plant Pathology Journal, 24(3) p. 322-327, 2008.
Keywords	Biofungicide; Bioresource; Natural substances; Postharvest storage; Soft rot decay

Abstract

Antifungal activities of natural substrances from Eucalyptus darlympleana, *E. globules, E. gunnii* and *E. unigera* were evaluated against postharvest pathogens of kiwifruits, Botrytis cinerea, *Botryosphaeria dothidea*, and *Diaporthe actinidiae*, to screen effective natural substances as an alternative to chemical fungicides. Methanol extract of the Eucalyptus trees showed strong antagonistic activity against the pathogenic fungi. Among them, *E. unigera* and *E. darlympleana* effectively inhibited mycelial growth of the pathogens. For chemical identification of the antifungal substances, the methanol extract of *E. darlympleana* leaves was successively partitioned with CH₂Cl₂, EtOAc, n-BuOH and H₂O. Among the fractions, CH₂Cl₂, and n-BuOH showed strong inhibitory activity of mycelial growth of the fungi. Five compounds were isolated from EtOAc and n-BuOH fractions subjected to SiO₂ column chromatography. Two phenolic compounds (gallic acid and 3,4-dihydroxy-benzoic acid) and three flavonoid compounds (quercetin, quercetin-3-O- α -L-rhamnoside, quercetin-3-O- β -D-glucoside) were identified by 'H-NMR and V13C-NMR spectroscopy. Among them, only gallic acid was found to be effective in mycelial growth and spore germination of *B. cinerea* at relatively high concentrations. The results suggest that gallic acid can be a safer and more acceptable alternative to current synthetic fungicides controlling soft rot decay of kiwifruit during postharvest storage.