Title	Expression of genes possibly correlated to the different susceptibility to Colletotrichum
	acutatum in unripe and ripe strawberry fruits
Author	M. Guidarelli, M. Maradeo, L. Zoli, P. Bertolini, E. Baraldi.
Citation	Abstracts of 7 th International Postharvest Symposium 2012 (IPS2012). 25-29 June, 2012.
	Putra World Trade Centre (PWTC), Kuala Lumpur, Malaysia. 238 pages.
Keywords	strawberry; anthracnose

Abstract

Many fungal pathogens interact with fruit hosts at pre-harvest unripe stages and remain quiescent during ripening, causing severe economic losses for post-harvest fruit production. Similarly, *Colletotrichum acutatum* causes antrachnose symptoms only on ripe strawberry (*Fragaria* x *ananassa*) fruits, whereas, on white unripe fruits, it becomes quiescent as melanized appressoria. A previous microarray experiment revealed that ripe and unripe strawberries interacting with C. *acutatum* differently regulate the expression of several genes. Among these genes, few encode for proteins with important regulatory roles in plant response to pathogens. In this study, qRT -PCR was used to make a narrow time scale analysis of the different activation of these genes in white and red fruits challenged with the pathogen. In particular, the expression of *lectin*, *WRKY*, *brassinosteroid insensitve receptor kinase 1 (BR1)*, and phenylpropanoid and flavonoid genes was monitored in fruits after 8-16-20-24 hours upon the interaction with C. *acutatum*. Differently from phenylpropanoid and flavonoid genes, the expression of *lectin*, *WRKY e BR1* genes was found regulated exclusively on white fruits at 24 hours post-interaction (hpi), when the C. *acutatum* becomes quiescent. This strongly suggests that these genes playa specific role in *C. acutatum* quiescence.