Title	Towards prolonging the vase life of cut flowers by slowing their opening: analysis of
	genes involved in petal cell growth of carnation
Author	S., Satoh, T., Harada, Y. Torii, Y. and S., Morita
Citation	Book of Abstracts.International Conference on Quality Management in Supply Chains of
	Ornamentals. 21-24 February, 2012. Golden Tulip Sovereign Hotel, Bangkok, Thailand.
Keywords	Dianthus caryophyllus; expansin; flower opening; sucrose synthase;
	xyloglucanendotransglucosylase/hydrolase (XTH)

Abstract

Flower opening in carnations (*Dianthus caryophyllus* L.) is the result of the enlargement of petal cells, which requires sugar metabolism and rearrangement of cell wall constituents. A cDNA encoding sucrose synthase (*DcSUS1*) was isolated from carnation petals as a candidate gene acting in the sugar metabolism in petal cells. *DcSUS1* transcripts accumulated abundantly and nearly constantly in petals of opening flowers. Moreover, four cDNAs encoding expansin (*DcEXPA1- DcEXPA3*) were cloned from petals of carnation flowers. Transcripts of XTH and expansin genes accumulated differently in tissues of opening carnation flowers, indicating regulated expression of these genes. *DcXTH2* and *DcXTH3* transcripts were detected in a large amount in petals as compared with other tissues. *DcEXPA1* and *DcEXPA2* transcripts were accumulated in petals of opening flowers. These findings suggested the involvement of expression of genes for sucrose synthase (*DcSUS1*), XTH (*DcXTH2* and *3*) and expansin (*DcEXPA1* and 2) in petal cell growth during the opening of carnation flowers.