Title	Boron improves the biocontrol activity of Cryptococcus laurentii against Penicillium
	expansum in jujube fruit
Author	Baohua Cao, Hua Li, Shiping Tian and Guozheng Qin
Citation	Postharvest Biology and Technology. Volume 68, June 2012, Pages 16-21
Keywords	Boron; Jujube fruit; Penicillium expansum; Cryptococcus laurentii; Biological control;
	Mitochondrial membrane potential

Abstract

Boron in the form of potassium tetraborate was effective for control of blue mold rot caused by *Penicillium expansum* in jujube fruit. The control activity was positively correlated with the concentration of boron solution. Boron at 0.5% enhanced the biocontrol efficacy of the antagonistic yeast *Cryptococcus laurentii* against *P. expansum*. Analysis of population dynamics demonstrated that growth of *C. laurentii* was not significantly influenced by boron in the fruit wounds. *C. laurentii* multiplied quickly, regardless of whether the yeast was used alone or combined with boron. An *in vitro* study showed that boron at 0.25% even stimulated the growth of *C. laurentii* at the end of incubation period. By comparison, mycelial spread of *P. expansum* in the culture medium was completely inhibited by boron at 0.25%. Using the fluorescent probe rhodamine 123, we found that the mitochondrial membrane potential collapsed significantly after boron treatment. This indicated that boron inhibited the growth of *P. expansum* by targeting the mitochondria of the fungal pathogen. Taken together, our data suggest that the enhancement in biocontrol efficacy of *C. laurentii* may be related to the differential influence of boron on the antagonistic yeast and the fungal pathogen.