Title Responses of 'd'Anjou' pear (*Pyrus communis* L.) fruit to storage at low oxygen setpoints

determined by monitoring fruit chlorophyll fluorescence

Author J.P. Mattheis and David Rudell

Citation Postharvest Biology and Technology, Volume 60, Issue 2, May 2011, Pages 125-129

Keywords Superficial scald; Black speck; Acetaldehyde; Ethanol; Methanol; Controlled atmosphere

Abstract

'd'Anjou' pears, which are susceptible to superficial scald (scald), were stored in air or controlled atmospheres containing 1.5 kPa O₂ or a minimal partial pressure determined using real-time monitoring of fruitchlorophyll fluorescence. In two experiments, the low O₂ setpoints were 0.4 and 0.5 kPa. During experiment 1, pears stored continuously at the low O₂ setpoint did not develop scald while scald developed on fruit stored in air, 1.5 kPa O₂, or 0.5 kPa O₂ for 6 months then 2 months at 1.5 kPa O₂. Fruit from 2 of 3 lots stored in 0.5 kPa O₂ during year one of the two year study developed peel black speck, a disorder previously reported on d'Anjou fruit stored in pO₂ of 1 kPa or below. All CA environments slowed peel color change with the low pO₂ having a larger effect on color after longer storage durations. Fruit softening was also reduced by the low pO₂ compared with fruit stored in air or 1.5 kPa O₂. Fruit stored in 0.4 kPa O₂ with 0.1 kPa CO₂ in experiment 2 did not soften to a commercially acceptable value during the shelf life period after removal from storage. The results indicate low O₂ partial pressure set points established by monitoring fruit chlorophyll fluorescence can prevent 'd'Anjou' scald but may result in black speck development as well as insufficient softening during a typical shelf-life period.