Title	Control of lemon green mold by a sequential oxidative treatment and sodium bicarbonate
Author	Luciana Cerioni, Luisa Rodríguez-Montelongo, Jacqueline Ramallo, Fernando Eduardo
	Prado, Viviana Andrea Rapisarda and Sabrina Inés Volentini
Citation	Postharvest Biology and Technology, Volume 63, Issue 1, January 2012, Pages 33-39

Keywords Lemon green mold; Hydrogen peroxide; Sodium hypochlorite; Sodium bicarbonate

Abstract

A sequential oxidative treatment (SOT), using sodium hypochlorite (NaClO) and hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ in the presence of a cupric salt inhibited in vitro growth and germination of Penicillium digitatum conidia, causal agent of citrus green mold. Here, modifications of this SOT were evaluated in vivo to control this disease in inoculated lemons. The treatment that consisted of two sequential 2-min baths: one with $200 \mathrm{mg} \mathrm{L}^{-1} \mathrm{NaClO}$ followed by a second with $600 \mathrm{mmol} \mathrm{L}^{-1} \mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of $6 \mathrm{mmol} \mathrm{L}^{-1}$ CuSO_{4}, resulted in 50% of disease control. When this treatment was combined with a third 2-min bath containing $30 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{NaHCO}_{3}$ at $37{ }^{\circ} \mathrm{C}\left(\mathrm{SOT}_{-} \mathrm{NaHCO}_{3}\right)$ and applied at 24 h post-inoculation, green mold incidence was reduced to $\sim 5 \%$. In non-inoculated lemons stored at $5^{\circ} \mathrm{C}$ for 45 d , this treatment did not modify the appearance or weight compared to untreated lemons. Furthermore, phenolic content and the oxygen consumption rate in flavedo and albedo tissues were not affected by the $\mathrm{SOT}-\mathrm{NaHCO}_{3}$. The malondialdehyde content in flavedo tissues increased immediately after treatment, but decreased to levels similar to control fruit 2 d later. The $\mathrm{SOT}-\mathrm{NaHCO}_{3}$ combines compounds that are safe to the environment and human health, thus it represent a potential alternative to synthetic fungicides for the integrated control of postharvest diseases.

