Title	Putative modes of action of Pichia guilliermondii strain R13 in controlling chilli
	anthracnose after harvest
Author	Arun Chanchaichaovivat, Bhinyo Panijpan and Pintip Ruenwongsa
Citation	Biological Control, Volume 47, Issue 2, November 2008, Pages 207-215
Keywords	Biological control; Chilli anthracnose; Chitinase; Colletotrichum capsici; β -1,3-glucanase;
	Pichia guilliermondii

Abstract

The mode of action of an antifungal yeast, *Pichia guilliermondii*, strain R13, against the fungal pathogen of chilli anthracnose, *Colletotrichum capsici*, was examined both on agar plates and in chilli fruitwounds. Light microscopy revealed that strain R13 attached to the fungal pathogen, and this attachment apparently restricted the proliferation of *C. capsici* in the chilli fruitwounds. In chilli juice, strain R13 suppressed *C. capsici* spore germination and germ tube length, but the suppression was completely overcome by addition of 0.05% glucose, sucrose, or 1% of nitrate sources (NH₄NO₃, NaNO₃, Ca(NO₃)₂·4H₂O, Mg(NO₃)₂·6H₂O, and KNO₃), suggesting the yeast was competing with the fungus for these substrates. Strain R13 also produced hydrolytic enzymes, including β -1,3-glucanase, and chitinase, in both solid and liquid media. The activities of these enzymes were highest when the *C. capsici* hyphal cell walls, rather than laminarin or glucose, were the carbon source; the activities were approximately 2 and 15 times higher with hyphal cell wall than with laminarin or glucose. Unlike the other strains tested, strain R13 did not produce a lethal toxin when cultivated under similar conditions. This study provides evidence that attachment, competition for nutrients, and secretion of hydrolytic enzymes, at least partially, explain how *P. guilliermondii* strain R13 suppresses *C. capsici*.