Title The effect of MeJA on ethylene biosynthesis and induced disease resistance to Botrytis cinerea in tomato

Author Mengmeng Yu, Lin Shen, Bei Fan, Danying Zhao, Yang Zheng and Jiping Sheng
Citation Postharvest Biology and Technology, Volume 54, Issue 3, December 2009, Pages 153-158
Keywords ACC oxidase; Botrytis cinerea; Ethylene; Lipoxygenase; Methyl jasmonate; Tomato fruit

Abstract

Methyl jasmonate (MeJA), a major derivative of the plant hormone jasmonic acid, plays a critical role in inducing resistance to fungal pathogen. To study the endurance of MeJA-induced resistance and its cause, green mature tomatoes (Solanum esculentum cv. Lichun) were treated with $100 \mu \mathrm{M} \mathrm{MeJA}$ and nordihydroguaiaretic acid (NDGA, LOX inhibitor) at -35 kPa for 0.5 min and incubated at $25 \pm 1^{\circ} \mathrm{C}, 85-90 \%$ RH. Treatment with MeJA reduced disease symptoms in tomato fruit soon after being inoculated with Botrytis cinerea. Lesion size in MeJA-treated fruit was inhibited by $42.5 \%, 27.9 \%$ and 13.9% respectively $(P<0.05)$ in fruit inoculated 1, 3 and 6 d after treatments. At advanced stages (inoculation carried out 9 and 12 d after treatments), no inhibitory effect of MeJA were found. Ethylene biosynthesis was activated in the response of green mature tomatoes to methyl jasmonate with a rapid (1 d) and enhanced ethylene peak $\left(0.9 \mathrm{ng} \mathrm{kg}^{-1} \mathrm{FW} \mathrm{s}^{-1}\right)$. However the ethylene level was below that of the control from 6 d to 12 d . This rise was closely related with conversion of ACC to ethylene, especially a rise in ACO activity (6 h), which preceded an increase in ACS $(12 \mathrm{~h})$ after MeJA treatment. The development of ethylene biosynthesis was accompanied by a significant increase in LOX activity. Two significant $\mathrm{O}_{2} \cdot{ }^{-}$peaks ($P<0.05$) were detected in MeJA-treated fruit during storage ($6.18 \mu \mathrm{molg}^{-1} \mathrm{FW} \min ^{-1}$ at 6 h and $5.68 \mu \mathrm{molg}^{-1} \mathrm{FW} \mathrm{min}^{-1}$ at 3 d). The correlations between LOX, and $\mathrm{O}_{2}{ }^{-}$and ACO activities were $0.75,0.73$ respectively ($P<0.05$). These results indicate that MeJAinduced resistance against B. cinerea is durable, MeJA induces LOX and the superoxide radicals formed by LOX may activate ACO and ethylene biosynthesis.

