Title	Real-time microsensor measurement of internal oxygen partial pressure in tomato fruit under
	hypoxic conditions
Author	Adrian D. Berry and Steven A. Sargent
Citation	Postharvest Biology and Technology, Volume 52, Issue 2, May 2009, Pages 240-242
Keywords	Solanum lycopersicum; Postharvest; Oxygen; Internal atmosphere; Controlled atmosphere;
	Modified atmosphere

Abstract

Internal oxygen partial pressure of tomato (*Solanum lycopersicum* L.) fruit was measured using a pccontrolled, fiber-optic O_2 meter. Tomato fruit were subjected to hypoxic conditions via blockage of gas exchange at the stem end or by controlled atmosphere storage (4 kPa O_2 plus 5 kPa CO_2). Internal O_2 partial pressure was evaluated in distal (i.e., blossom-end) tissue (10-mm depth). In both tests tomato fruit exposed to ambient atmosphere conditions had internal O_2 partial pressure of 18 kPa. Hypoxia was induced following lanolin application to the stem scar, and O_2 partial pressure decreased to 0.3 kPa after 1.5 h. During short-term CA application, the O_2 content of tomato was 1.0 and 0.2 kPa, after 1 and 2 h, respectively. This measurement apparatus shows promise for determining internal O_2 partial pressure in soft fruits as affected by such external conditions as coatings, and modified or controlled atmosphere storage.