TitleChilling injury in stored nectarines and its detection by time-resolved reflectance spectroscopyAuthorS. Lurie, M. Vanoli, A. Dagar, A. Wekslera, F. Lovati, P. Eccher Zerbini, L. Spinellif, A.
Torricelli, J. Feng and A. Rizzolo

Citation Postharvest Biology and Technology, Volume 59, Issue 3, March 2011, Pages 211-218

Keywords *Prunus persica*; Gel breakdown; Bleeding; Internal browning; Nondestructive measurement; Mealiness; Woolliness

Abstract

Nectarine fruit after cold storage soften normally, but become dry instead of juicy and can develop flesh browning, bleeding and a gel-like or glassy formation of the flesh near the pit. An experiment was conducted to see if time-resolved reflectance spectroscopy could distinguish these internal disorders nondestructively. The optical parameters of absorption coefficient (μ_a) and reduced scattering coefficient (μ'_s) were measured at 670 nm and 780 nm, on nectarine (Prunus persica cv. Morsiani 90) fruit held at 20 °C after harvest or after 30 d of storage at 0 °C or 4 °C. Each day for 5 d 30 fruit were examined both non-destructively and destructively. Other measurements were firmness with a penetrometer, peel colour on the blush and non-blush side, expressible juice, weight loss, and visual rating of internal browning, bleeding, and gel. The fruit had been sorted at harvest according to the value of $\mu_a 670$ so that each batch had a similar spread of fruit maturity. More mature fruit (lower $\mu_a 670$ values) developed internal browning and bleeding with more severe symptoms compared to less mature ones (higher $\mu_a 670$ values). It was found that $\mu_a 780$ could distinguish healthy fruits from the chilling injured ones. Canonical discriminant analysis indicated that fruit without cold storage had low μ_a 780, less water loss, low firmness, but high μ_a 670 and high expressible juice compared with cool stored fruit. Fruit cool stored at 4 °C had high μ_a 780 and less expressible juice, lower water loss and lower firmness compared with fruit cool stored at 0 °C. It was concluded that time resolved reflectance spectroscopy could detect internal woolliness and internal browning in nectarines after storage.