Title	Evaluation of high electric field chamber for shelf life extension of food and agricultural
	commodities
Author	T. Shiina, D. Nei, N. Nakamura and M. Thammawong
Citation	ISHS Acta Horticulturae 880:517-524. 2010.
Keyword	high electric field; voltage; temperature; ozone; fresh food; preservation

Abstract

An alternative current (AC) high electric field chamber (HEF chamber, a newly developed refrigerator device) was used to investigate the physical characteristics expected to play a role in the storage shelf life of food and agricultural commodities. The HEF chamber with low temperature design was set at different input voltages (0-7 kV) and temperature levels (1-25°C). At each condition of voltage input and temperature setting, changes of ozone emission (O_3 emission) and temperature in the chamber were continuously monitored for 24 h. Mean value of O_3 emission produced within the HEF chamber was highest at 1°C with 100% HEF voltage (7 kV). A decreasing O_3 concentration was observed with lower voltage input (75, 50, and 25%, respectively) and higher temperatures (5, 10, 15, 20, and 25°C, respectively). Since electric fields have been reported to extend shelf life of fresh commodities, emission of O_3 in the HEF chamber observed in this study seems to be a key factor contributing to effectiveness of the combined HEF and low temperature effect on enhanced storage life and quality of fresh commodities. A comparison between the HEF and non-HEF/ O_3 treatment, based on changes of physiological and chemical composition and microorganism growth, was conducted to clarify the effects of O_3 emission on quality of fresh produce. Further development of the HEF chamber may lead to development of a novel refrigerator device for storage of fresh food and agricultural commodities.