Title	Fruits and vegetables passive refrigerated transport: modelling the respiratory process
Author	M. Cefola, N. Calabrese, A. Carito, S. Vanadia and B. Pace
Citation	ISHS Acta Horticulturae 858:485-488. 2010.
Keyword	postharvest; grape; tomato; respiration rate

Abstract

To study the respiration rate of fresh produces as a function of O_2 and CO_2 concentration, a general model, applicable in a large variety of packaging configurations, food products and environmental conditions was employed. In this process the respiration rate of grape and tomato has been modelled by a Michaelis-Menten-type equation at a constant temperature, while its dependence on temperature has been defined using an Arrhenius-type equation. To validate the model, the respiration rates of tomato and grape were measured during a simulated transport in a cold room for a week. The results indicated that the model was able to represent the respiration process, since the values predicted by using this model agreed well with the experimental data.