Title Comparing the function of perforated and non-perforated film in modified-atmosphere packaging: impact on the quality of broccoli

Author F. Vallejo and R.M. Beaudry
Citation ISHS Acta Horticulturae 857:503-512. 2010.
Keyword 1-methylcyclopropene; steady-state oxygen; respiratory quotient; ethanol; total phenolics; chlorophyll; storage; temperature

Abstract

A wide range of steady-state O_{2} partial pressures (0.1 to 18 kPa) was obtained in perforated and nonperforated packages composed of low density polyethylene (LDPE) film at 0 and $10^{\circ} \mathrm{C}$ for the storage of broccoli (Brassica oleracea L. var. italica). Half of the broccoli was treated for 24 h at $10^{\circ} \mathrm{C}$ with 1 ppm 1MCP prior to storage. The combinations of steady-state O_{2} and CO_{2} partial pressures achievable depended on whether the film was perforated or not. The regression fitting the O_{2} versus CO_{2} headspace data for nonperforated packages was linear with a negative slope such that for every 4 kPa decrease in O_{2}, there was a 1 kPa increase in CO_{2}. The curve fitting the data for perforated packages was also linear and negative, but steeper, such that for every 4 kPa decrease in O_{2}, there was a 4 kPa increase in CO_{2}. The result was that for a given steady-state O_{2} concentration, the CO_{2} concentration was higher in the perforated package compared to the nonperforated packages. For florets stored at $10^{\circ} \mathrm{C}$, the higher CO_{2} in the perforated packages resulted in higher visual quality and better color retention was significantly better than in the non-perforated packages for packages with O_{2} levels greater than approximately 2 kPa . There was no effect of the elevated CO_{2} for the florets stored at $0^{\circ} \mathrm{C}$. $1-\mathrm{MCP}$ application only had a small positive impact on floret quality at $10^{\circ} \mathrm{C}$ and no effect at $0^{\circ} \mathrm{C}$. The data suggest that combination of both perforated packages and $1-\mathrm{MCP}$ application on broccoli florets may have the potential to provide some protection against rapid quality loss when the storage temperature exceeds the recommended $0^{\circ} \mathrm{C}$.

