Title	The major compounds of crude ginger (Zingiber officinale Roscoe) extracts from supercritical
	CO_2 extraction
Author	A. Sirichote, C. Puengphian, and B. Ooraikul
Citation	Book of Abstracts, Southeast Asia Symposium Quality and Safety of Fresh and Fresh Cut
	Produce Greater Mekong Subregion Conference on Postharvest Quality Management in
	Chains, August 3-5, 2009, Radisson Hotel, Bangkok, Thailand.
Keyword	ginger: supercritical CO, extraction: Gas Chromatography Mass Spectrophotometry

Abstract

This study aims to identify the major compounds of crude ginger extracts from the supercritical CO_2 extraction. Fresh ginger (*Zingiber officinale* Roscoe) rhizome were peeled, sliced and dried in a rotary air dryer until containing the moisture content of 9.32±0.23 %. Dried gingers were then pulverized to coarse powder approximately 0.5 mm diameter prior to extraction. The supercritical CO_2 extraction of dried ginger was performed at the extraction column with the pressure of 200.0 bar, at the temperature of 35.0°C, followed by series of separation into 1st and 2nd separating columns with the conditions of 60.0 bar, at 35.0°C and 50.0 bar, at 20.0°C, respectively. Crude ginger extracts obtained from the 1st and 2nd separating columns were subsequently identified by using Gas Chromatography-Mass Spectrophotometry. The major compounds of crude ginger extracts were zingiberene (42.97%), AR-curcumene (8.69%), (1,8-cineole (2.58%) and zingerone (4.84% from the 1st separating column, 14.46% from the 2nd separating column).