Title	Application of PACK-in-MAP software for MAP design
Author	Pramod V. MAhajan, Maria, J.Sousa-Gallagher, Hiral A. Patel, Bingchuan Yuan and Jorge C.
	Oliveira
Citation	Abstracts, 10 th International Controlled & Modified Atmosphere Research Conference, 4-7
	April 2009, Antalya, Turkey. 80 pages.
Keyword	PACK-in-MAP software; MAP; software

Abstract

PACK-in-MAP is a web-based (www.packinmap.com) software tool that helps in designing modified atmosphere packages for fresh and fresh-cut fruits and vegetables. The user-friendly online software determines the needs for packaging of fruits and vegetables in order to maintain the high quality and extend the shelf-life. The software contains a database on information on product respiration rate, optimum temperature, and optimum range of O_2 and CO_2 concentrations as well as permeability of different packaging materials, including micro-perforated films. The published information on MAP has been compiled and PACK-in-MAP software has been developed to establish which commercially available polymeric films would be most suitable for a particular produce. A case study will be presented to illustrate the use of the software to design a MAP for 1 kg of whole mango var. Nam dok mai packed in a box type package with total volume 1.55 x 10⁻³ m³. Ethyl cellulose was found to be the best film with an area of 0.0221 m² yielding 6.5% O2 and 7.35% CO2 at steady state level. This gas composition was found to be within the optimal range for whole mango. The software was further used to simulate the package O_2 and CO_2 during storage, to know other alternative films and also to evaluate the impact of product and package variability on MAP.