Title	Effects of superoxide radicals on ACC synthase activity in chilling-stressed etiolated
	mungbean seedlings
Author	Desen Ke, Guchou Sun and Zhengxun Wang
Citation	Plant Growth Regulation 51 (1): 83-91. 2007.
Keywords	Superoxide radical; ACC synthase; Chilling stress; Mungbean seedling

Abstract

The activity of 1-aminocyclopropane-1-carboxylic acid synthase (ACC synthase, ACS) and the concentrations of superoxide radical (O_2^{-}) and hydrogen peroxide (H_2O_2) were measured in etiolated mungbean seedlings following their transfer to a growth chamber at 25°C after a 5-h-chilling treatment at 5°C. All of these variables increased dramatically after the transfer, and strong correlations were found between ACS activity and the concentrations of superoxide and H₂O₂. Exogenous applications of two generators of superoxide radicals, methylviologen (MV) and xanthine-xanthine oxidase (X-XOD), enhanced ACS activity in seedlings, but their effects were inhibited by exogenous applications of specific scavengers of O₂⁻. However, applications of H₂O₂ or specific H₂O₂-scavengers had no significant effects on seedlings ACS activity. The results indicate that O_2^{-1} was involved in the chilling-induced increases in ACS activity, but not H₂O₂. ACS activity peaked ca. 8 h after the transfer, and then declined, but the decline could be counteracted by exogenous applications of specific O_2^{-1} scavengers, this suggests that damage was caused by superoxide radicals influencing ACS activity in etiolated mungbean seedlings. Further analysis of changes in two key kinetic parameters of ACS activity— V_{max} (maximum velocity) and $K_{\rm m}$ (the Michaelis constant)—in the seedlings indicated that the presence of O_2^{-1} may reduce $K_{\rm m}$, i.e. increase substrate (S-adenosyl methionine, SAM) affinity. That would be the main mechanism responsible for the observed chilling-induced increases in ACS activity in etiolated mungbean seedlings.