Title Lytic enzymes induced by *Pseudomonas fluorescens* and other biocontrol organisms

mediate defence against the anthracnose pathogen in mango

Author R. Vivekananthan, M. Ravi, A. Ramanathan and R. Samiyappan

Citation World Journal of Microbiology and Biotechnology 20 (3): 235-244. 2004.

Keywords Bacillus subtilis; biocontrol; carbendazim; chitinase; Colletotrichum gloeosporioides;

beta-1,3-glucanase; mango; Pseudomonas fluorescens; Saccharomyces cerevisiae

Abstract

Talc-based bioformulations containing cells of *Pseudomonas fluorescens, Bacillus subtilis* and *Saccharomyces cerevisiae* were evaluated for their potential to attack the mango (*Mangifera indica* L.) anthracnose pathogen *Colletotrichum gloeosporioides* Penz. under endemic conditions. The preharvest aerial spray was given at fortnightly and monthly intervals. The plant growth-promoting rhizobacteria *Pseudomonas fluorescens* (FP7) amended with chitin sprayed at fortnightly intervals gave the maximum induction of flowering, a yield attribute in the preharvest stage, consequently reduced latent symptoms were recorded at the postharvest stage. An enormous induction of the defence-mediating lytic enzymes chitinase and β -1,3-glucanase was recorded in colorimetric assay and the expression of discrete bands in native PAGE analysis after FP7 + chitin treatment. The enhanced expression of defence-mediating enzymes may collectively contribute to suppress the anthracnose pathogen, leading to improved yield attributes.