Title	Quality maintenance of broccoli and mushroom by nitrous oxide treatment during storage
Author	Joo Youn Park and Gun Hee Kin
Citation	Abstracts of 27th International Horticultural Congress & Exhibition (IHC 2006), August 13-
	19, 2006, COEX (Convention & Exhibition), Seoul, Korea. 494 pages.

Keywords mushroom; broccoli; nitrous oxide

Abstract

There is general trend of a continuous increase in fresh market sales of vegetables. Many methods have been investigated to improve quality and extend shelf life during marketing. In this study, nitrous oxice (N₂O) gas, that is known to have potential for enhancing shelf life of vegetables, was evaluated for the perishable products, broccoli and mushroom. The effect of N₂O on weight loss rate, L*a*b* values, respiration rate and ethylene forming enzyme (EFE) activity and mushroom were examined during storage at 20°C and 4°C. Firmness and total soluble sugar were also examined. Whole broccoli were treated with different concentrations of N₂O gas (N₂O 60%: O₂ 40% and N₂O 80%: O₂ 20%) for 24 hours and mushroom were treated for 12 hours with same gas concentration. Weight loss of untreated broccoli was higher than in treated samples. Total color difference (Δ E) value increased during storage of all sample. Δ E values ranged from 0 to >2, indicating noticeable visual changes in color particularly at a late stage of storage. Firmness of mushrooms decreased sharply throughout storage. Softest mushrooms were the controls. Respiratory rates of mushrooms were reduced by N₂O and respiratory rates at 20°C were much higher than those at 4°C, probably because of deterioration of tissue, development of fungi and drying of mushroom by moisture loss. EFE activities were delayed or inhibited in N₂O treatments.