Title	Effects of hypobaric storage on active oxygen metabolism of persimmon (Diospyros kaki L.)
	fruit
Authors	Yongjun Zhou, Haiyan Gao, Hangjun Chen, Jinlin Mao, Wenxuan Chen, Lili Song
Citation	ISHS Acta Horticulturae 804:523-526. 2008.
Keywords	hypobaric storage; active oxygen; persimmon fruit

Abstract

Hypobaric storage has been shown to significantly inhibit postharvest ripening and senescence and extend shelf life of fruits and vegetables. Persimmon fruit senesces and rots easily after harvested. To better understand the role of hypobaric storage in senescence and decay development of persimmon fruit, experiments were conducted to determine malondialdehyde (MDA) content, relative electrolyte leakage rate, superoxide (O_2^{-}) production rate and hydrogen peroxide (H_2O_2) content, as well as activities of superoxide dismutase (SOD) and catalase (CAT). The results showed that the application of hypobaric storage (40-50 kPa at 0-1°C and 85-90% RH) maintained SOD and CAT activities, inhibited increases of both O_2^{-} production rate and H_2O_2 content at the late stage of fruit storage, decreased MDA content and relative electrolyte leakage rate. Thus, hypobaric storage could delay an increase of the membrane permeability, reduce the peroxidation of membrane lipids and postpone the fruit senescence.