Title The kinetics of acetaldehyde and ethanol accumulation in 'Hass' avocado fruit during induction and recovery from low oxygen and high carbon dioxide conditions
Author J. Burdon, N. Lallu, C. Yearsley, D. Burmeister and D. Billing
Citation Postharvest Biology and Technology, Volume 43, Issue 2, February 2007, Pages 207-214
Keywords Avocado; *Persea americana* Mill.; Fruit; Oxygen; Carbon dioxide; Acetaldehyde; Ethanol; Anaerobic; Kinetics

Abstract

The kinetics of acetaldehyde (AA) and ethanol (EtOH) accumulation and pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities were studied in pre-climacteric 'Hass' avocado fruit flesh during induction and recovery from hypoxic conditions at 6 °C. Oxygen levels <0.5% resulted in a rapid accumulation of AA and EtOH. The pattern of AA and EtOH accumulation could be described by a hyperbolic model, although the initial 96 h of EtOH accumulation was linear. The accumulation of EtOH and AA was coincident with a doubling of the extractable ADH and PDC activities after 120 h exposure. Exposure of the fruit to up to 20% CO₂ concentrations resulted in an increase in tissue levels of AA, but not EtOH. The pattern of AA accumulation under high CO₂ was similar to that under low O₂, with the level of AA being higher at higher CO₂ concentrations.

The AA and EtOH induced by low O_2 declined to basal levels in an exponential manner when O_2 was increased from ≤ 0.5 to $\geq 2\%$. The longer the duration of hypoxic induction, the longer the time required for AA and EtOH to decline to basal levels. When low O_2 induction was 48 h or less, the time required for AA and EtOH to decline to basal levels was not affected by O_2 concentrations >2%. However, after 96 h induction, the initial rate of decline in AA or EtOH was slower at lower O_2 concentrations. Including 20% CO₂ in the recovery atmosphere decreased the initial rapid rate of AA and EtOH decline, affecting EtOH levels more than AA, although both compounds reached pre-induction levels at approximately the same time. The rate of decline of ADH and PDC activity following low O_2 induction was accelerated by the presence of CO₂ in the atmosphere.

Based on the rapid induction of AA and EtOH in response to low O_2 stress, and the comparable rapid recovery to basal levels after removal of the stress atmosphere, together with a seemingly high tolerance to O_2 atmospheres <2% and the similar but relatively smaller effect of CO_2 compared with O_2 , it is concluded that preclimacteric 'Hass' avocados are physiologically well suited to dynamic CA storage.