Title	Physiological responses and quality attributes of Chinese chive leaves exposed to CO ₂ -
	enriched atmospheres
Author	Yoshihiro Imahori, Yoshitaka Suzuki, Minako Kawagishi, Megumi Ishimaru, Yoshinori Ueda
	and Kazuo Chachin
Citation	Postharvest Biology and Technology, Volume 46, Issue 2, November 2007, Pages 160-166
Keywords	Alcohol dehydrogenase; Allium tuberosum; Amino acid; Chlorophyll; CO ₂ -enriched
	atmospheres: Ethanol: Pyruvate: Succinate dehydrogenase

Abstract

Harvested leaves of Chinese chives were stored in air + 10, 20 or 30% CO₂, or air for 7 days at 20 °C to determine the effects of CO₂-enriched atmospheres on their physiology and quality. Leaf yellowing was visible at day 5 in air, whereas CO₂ enrichment delayed yellowing and retarded chlorophyll and protein degradation that accompanied leaf senescence. At 30% CO₂, undesirable off-odors were induced, presumably due to accumulation of ethanol in the tissue. The ethanol contents did not change during storage in leaves exposed to 10 or 20% CO₂, or air, while the content in leaves exposed to 30% CO₂ significantly increased. However, CO₂ enrichment did not significantly influence acetaldehyde concentrations for the leaves. Alcohol dehydrogenase (ADH) activity increased in leaves exposed to 10 or 20% CO₂ was slightly higher than that of the control. Succinate dehydrogenase (SDH) activity greatly decreased in leaves exposed to 30% CO₂, while its concentration in leaves exposed to 10 or 20% CO₂ was slightly higher than that of the control. Succinate dehydrogenase (SDH) activity decreased slightly. The content of pyruvate increased in leaves exposed to 30% CO₂, while its concentration in leaves exposed to 10 or 20% CO₂ was slightly higher than that of the controls. Thus, our results indicate that it would be necessary to keep Chinese chives at 20 °C because of a lack of refrigeration in the distribution system, or in a modified atmosphere package designed to develop an optimum atmosphere during retail display, and suggest a potential for using CO₂-enriched atmospheres at higher temperatures to help maintain quality.