Title	Use of liquid nitrogen in CA storage: Theoretical analysis and experimental validation
Author	P.V. Mahajan and T.K. Goswami
Citation	Journal of Food Engineering, Volume 82, Issue 1, September 2007, Pages 77-83
Keywords	Controlled atmospheres; Cooling; Fruits; Liquid nitrogen; Rapid CA; Storage; Vegetables

Abstract

Liquid nitrogen (LN_2) is a colorless, odorless, low boiling cryogenic liquid. Due to its inertness and high expansion ratio (646 between liquid and gaseous N₂ at 0 °C), it is an excellent material for rapid purging of the initial O₂ gas from the space of the controlled atmosphere (CA) storage. The present study establishes a relationship for predicting the amount of LN₂ required for reducing O₂ concentration in the CA storage. Simulations were carried out for predicting the amount of LN₂ required for flushing at different conditions such as purity level of LN₂, O₂ set point of the CA storage and flow rate of LN₂. The simulation results were validated using the laboratory scale CA storage system having a storage capacity that could hold 10 kg of apples. It was found that higher the purity level lower was the consumption of LN₂. At O₂ set point of 3%, the consumption of LN₂ was found to increase from 0.12 to 0.21 kg when the purity level decreased from 100% to 97.5%. Higher level of O₂ set point was found to consume less amount of LN₂ at a given purity level. Flushing of LN₂ at flow rate of 1.51×10^{-6} m³/s reduced O₂ concentration more efficiently and also avoided the freezing temperature inside the CA storage.