Title Modeling changes of headspace gas concentrations to describe the respiration of fresh-cut

melon under low or superatmospheric oxygen atmospheres

Author G. Oms-Oliu, R. Soliva-Fortuny and O. Martín-Belloso

Citation Journal of Food Engineering, Volume 85, Issue 3, April 2008, Pages 401-409

Keywords Fresh-cut melon; Modified atmosphere packaging; Superatmospheric O₂ levels; Modeling;

Quality

Abstract

Packages of fresh-cut 'Piel de Sapo' melon were stored under 2.5 kPa O_2 + 7 kPa O_2 , 21 kPa O_2 , and 70 kPa O_2 atmospheres for 35 days at 4 °C. A mathematical procedure was tested to model changes of inpackage O_2 and O_2 concentrations throughout storage, in order to predict the respiratory activity of the commodity. The relationships between respiratory activity and quality parameters of fresh-cut 'Piel de Sapo' melon were also assessed. A 70 kPa O_2 atmosphere reduced O_2 production rate during 14 days, as well as prevented ethanol production during 3 weeks of storage. On the other hand, fermentative pathways were triggered under a 2.5 kPa O_2 + 7 kPa O_2 atmosphere. Although 70 kPa O_2 levels involved a high O_2 consumption and a decrease in the soluble solids content, the use of superatmospheric O_2 atmospheres are proposed to reduce O_2 production rates, avoid fermentative reactions and, maintain firmness and chewiness of fresh-cut 'Piel de Sapo' melon for 2 weeks of storage.