Title	Moderate electric field treatment of sugarbeet tissues
Author	N.I. Lebovka, M. Shynkaryk and E. Vorobiev
Citation	Biosystems Engineering, Volume 96, Issue 1, January 2007, Pages 47-56
Keywords	sugarbeet; moderate electric field

Abstract

The effects of thermal and moderate electric field (MEF) treatment on the damage of sugarbeet tissue were discussed. The activation energy ΔU_T was estimated as 170 kJ mol⁻¹ using the temperature dependences of the characteristic thermal damage time within the temperature interval 50–70 °C. The temperature dependences of electrical conductivity were measured for the maximally damaged and intact sugarbeet tissues; these data were used for estimation of the conductivity disintegration index at different MEF treatments. The results evidenced that the electrically stimulated damage of a sugarbeet tissue occurs even at a rather small electric field strength *E* of 20 V cm⁻¹ if treatment time is large enough ($t\approx 1$ h). The energy consumption caused by MEF-treatment is mainly related to temperature elevation inside the tissue and noticeably decreases with increasing electric field strength *E*. MEF-treatment experiments in the aqueous media reveal the dependence of damage efficiency on sample orientation with respect to the external electric field.