Title The influence of modified atmospheres and their interaction with water activity on the radial

growth and fumonisin B1 production of Fusarium verticillioides and F. proliferatum on corn.

Part I: The effect of initial headspace carbon dioxide concentration

Author S. Samapundo, B. De Meulenaer, A. Atukwase, J. Debevere and F. Devlieghere

Citation International Journal of Food Microbiology, Volume 114, Issue 2, 10 March 2007, Pages 160-

167

Keywords Fusarium verticillioides; Fusarium proliferatum; Modified atmospheres; Headspace carbon

dioxide; Water activity; Fumonisin B₁

Abstract

The effect of modified atmospheres on the growth and fumonisin B_1 production of *Fusarium verticillioides* and *Fusarium proliferatum* on corn is presented in a series of two papers. In this, the first part, the effect of initial headspace (IH) carbon dioxide concentration and its interaction with water activity (a_w) on growth and fumonisin B_1 production was evaluated. It was observed that at all a_w values studied, increase in the IH CO_2 concentration generally resulted in a decrease in the colony growth rate $(g, \text{ mm day}^{-1})$ and maximum colony diameter $(D_{\text{max}}, \text{ mm})$ and an increase in the lag phase duration $(\lambda, \text{ day})$. Although both a_w and IH CO_2 concentration had significant and synergistic effects on g, a_w had the largest effect. As little as 10% IH CO_2 completely inhibited the production of fumonisin B_1 by F. verticillioides. F. proliferatum was more resistant and required 40, 30 and 10% IH CO_2 at a_w 0.984, 0.951 and 0.930, respectively, to completely inhibit fumonisin B_1 production. These results demonstrate that modified atmospheres containing high CO_2 levels could potentially be employed for the protection of corn from fungal spoilage and mycotoxin contamination during the post-harvest period.