Title	The influence of modified atmospheres and their interaction with water activity on the radial
	growth and fumonisin B1 production of Fusarium verticillioides and F. proliferatum on corn.
	Part II: The effect of initial headspace oxygen concentration
Author	S. Samapundo, B. De Meulenaer, A. Atukwase, J. Debevere and F. Devlieghere
Citation	International Journal of Food Microbiology, Volume 113, Issue 3, 15 February 2007, Pages
	339-345
Keywords	Fusarium verticillioides; Fusarium proliferatum; Modified atmospheres; Headspace oxygen;
	Water activity; Fumonisin B_1

Abstract

This paper is the second in a series of two that describe the effect of modified atmospheres on the growth and mycotoxin production of Fusarium verticillioides and Fusarium proliferatum on corn. In this part, the effect of initial headspace (IH) oxygen concentration and its interaction with water activity (a_w) on growth and fumonisin B1 production was investigated. In addition, the impact of vacuum packaging and in-cooperation of O_2 scrubbing sachets was also studied. It was observed that at all a_w values studied, reduction of IH O_2 concentration from 20 to 2% had no significant effect on the colony growth rate (g, mm d^{-1}) and lag phase duration (λ , d). However, g and λ were positively and negatively correlated to a_w . The IH O₂ concentration was determined to have a a_w dependent effect on the oxygen consumption rate. Although the maximum colony diameter (D_{max} , mm) decreased with the reduction of the IH O₂ level, the greatest mycelial density occurred at 10% IH O₂ for both isolates. This observation was accompanied by a trend of a decrease in the value of the IH O_2 level at which the most fumonisin B_1 was produced from 15 to 5% when the a_w was decreased from 0.976 to 0.930 for F. verticillioides. For F. proliferatum the optimum conditions for fumonisin B₁ production shifted from 20% at $a_{\rm w}$ 0.976 to 10% at both 0.951 and 0.930. Vacuum packaging and the in-cooperation of O₂ absorbing sachets completely inhibited the growth of both isolates. These results together with those reported in Part I of the study indicate that O2 should preferably be completely excluded from modified atmospheres that are employed to protect stored corn from fungal growth and mycotoxin production.