Title	Effect of high CO ₂ pretreatment on quality, fungal decay and molecular regulation of stilbene
	phytoalexin biosynthesis in stored table grapes
Author	M Teresa Sanchez-Ballesta, Jorge Bernardo Jiménez, Irene Romero, José M Orea, Roberto
	Maldonado, Ángel González Ureña, M Isabel Escribano and Carmen Merodio
Citation	Postharvest Biology and Technology, Volume 42, Issue 3, December 2006, Pages 209-216
Keywords	Table grapes; Vitis vinifera; Fruit quality; Postharvest technology; Carbon dioxide; Laser
	spectrometry; Stilbene synthase; Resveratrol

Abstract

Table grapes (*Vitis vinifera*) cv. Cardinal stored at low temperature were analysed to determine the effect of pretreatment with 20 kPa $O_2 + 20$ kPa $CO_2 + 60$ kPa N_2 for 3 days on quality and control of decay. The pattern of stilbene synthase (STS) gene expression and trans-resveratrol levels were also analyzed in grapes during low temperature storage at 0 °C and further shelf-life at 20 °C for 2 days. Our results showed that high CO_2 pretreatment was effective for improving appearance of the bunches and maintaining the quality of the berries. In CO_2 -treated bunches the browning and withering index, the decline in relative water content and the weight loss were also lower than in non-treated ones. The levels of *STS* mRNA and the accumulation of transresveratrol in CO_2 -treated grapes were much lower than in the non-treated grapes during low temperature storage. Moreover, the pattern of *STS* gene expression and trans-resveratrol content in CO_2 -treated grapes was consistent with the reduction of natural total decay produced by this pretreatment. This effective non-stressing treatment avoids the induction of trans-resveratrol during low temperature storage until its synthesis is enhanced during shelf-life at 20 °C.