Title	Modeling the influence of temperature and relative humidity on respiration rate of prickly pear
	cactus cladodes
Author	Juan Carlos Guevara, Elhadi M. Yahia, Randolph M. Beaudry and Luis Cedeño
Citation	Postharvest Biology and Technology, Volume 41, Issue 3, September 2006, Pages 260-265
Keywords	Opuntia ficus-indica; Modified atmosphere; Respiration; Temperature; Relative humidity

Abstract

Respiration rate (R_{02}) of prickly pear cactus cladodes (*Opuntia* spp.) was measured as a function of four temperature (*T*) and six relative humidity (RH) combinations for O₂ partial pressures between 15 and 0.8 kPa, which were considered to support aerobic respiration. The rate of respiration (R_{02}) was determined based on O₂ depletion of the atmosphere in sealed containers containing 1 kg of cladodes. The O₂ partial pressure declined linearly over time and the slopes of the fitted lines were used to calculate the rate of O₂ uptake. The rate of O₂ consumption increased with increasing temperature and decreased with increasing RH. The respiratory rate at 25 °C was approximately 30–40 times higher than at 5 °C. The respiratory rate at 65% RH was between 30 and 90% greater than at 90% RH, depending on the temperature. Data for $\ln(R_{02})$ for each RH level were regressed against the inverse of the temperature (K⁻¹) to determine Arrhenius constants and calculate the apparent E_a of respiration for the six RH conditions. The E_a was similar for each RH level, varying between a low of 113 to a high of 131 kJ mol⁻¹. The following equation having an r^2 of 0.95 was developed describing respiration as a function of RH and temperature (°C) using only four constants:

Ln(R) = (-0.1985 + 50.96 x (1/273.15+T)) x RH + 67.64 - 18430 x (1/273.15+T)